

Long-term satellite data records of HCHO, H₂O and CHOCHO

Introduction to OVOC/water vapor datasets for MEaSUREs

Christopher Chan Miller, Gonzalo Gonzalez Abad, Caroline Nowlan, Helen Wang, Kang Sun, Ewan O'Sullivan Xiong Liu, Kelly Chance

29th August 2019

MEaSUREs will build on existing SAO algorithms to retrieve targets using observations from 6 instruments

Base code for all algorithms will be shared with TEMPO

Product will include algorithm traceability chains and error characterization borrowing from past projects e.g. QA4ECV (Boersma et al., 2018)

Instrument Retrievals done in two phases:

- (1) OMI, GOME-2, OMPS (overlapping validation data)
- (2) GOME, SCIAMACHY (validation via correlation with products from (1)

Reliable long-term HCHO/CHOCHO observations will improve emissions attribution through temporal correlation

Zhu et al. (2017)

Reliable long-term HCHO/CHOCHO observations will improve emissions attribution through temporal correlation

Zhu et al. (2017)

Water will be used as a fiducial reference for instrument harmonization

Wang et al. (2016)

Good-quality long term records exist for the entire MEaSUREs period enabling inter-sensor validation

HCHO and CHOCHO will be indirectly validated using CTMs combined with aircraft observations

HCHO and CHOCHO will be indirectly validated using CTMs combined with aircraft observations

Key Datasets

Algorithm

Level 1 Radiance
Radiance Reference "I₀"

Spectrum Fit
Algorithm

Derive Slant Column via direct spectral fit using TEMPO codebase

Testing the new stand-alone AMF Simulator

Next: Correct cloud products to account for inconsistent algorithm assumptions

Observations:
Radiance
O2 Slant Column

State Elements:
Surface Refl. (MODIS,Glint,Snow)
Aerosol

Lambertian Cloud Fraction/Pres.

Improved radiance references using cloudy targets

The typical radiance reference sector lies outside the TEMPO FOR

Using Clouds can shield boundary layer concentrations

Improved radiance references using cloudy targets

Radiances averaged for fully cloudy pixels between 700-800hPa

Radiances become stable after ~1 week averaging with high estimated precision (1x10-5)

Project Timeline

Initial release will be on the SAO Data Repo:

2021: OMI,GOME-2,OMPS

2023: GOME, SCIAMACHY

Final Release Hosted on GES-DISC

Release will include daily Level 3 Products with new physics-based oversampling with archived grid weights

Acknowledgments:

NASA support through ACMAP Aura, TASNPP, and MEaSURES OMI/Aura and TEMPO Science Teams

